Sistema de recomendación vocacional en lÃnea / Online vocational recommendation system
Abstract
Actualmente elegir la profesión deseada se ha convertido en una de las decisiones más difÃciles dada la gran variedad de opciones e información disponibles. el proceso para seleccionar una profesión comienza con la correcta elección del programa educativo que más se ajuste a las habilidades, conocimiento y preferencias del individuo. para apoyar dicho proceso existen diferentes opciones tales como cursos de orientación vocacional asà como aplicaciones informáticas, las cuales ayudan a los usuarios en su proceso de selección (katz, 1993); sin embargo, la mayorÃa de estas aplicaciones tienen un costo alto o no ofrecen resultados confiables. el objetivo de este trabajo es presentar un sistema de recomendación vocacional en lÃnea basado en un algoritmo de asociación y clasificación de información como el principal componente de definición de perfiles vocacionales.References
Adomavicius, G., y Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), pp. 734-749.
Aher, S. B., & Lobo, L. M. R. J. (2013). Combination of machine learning algorithms for recommendation of courses in E-Learning system based on historical data. Knowledge Based Systems, 51, pp. 1-14.
Alcaraz, S., Sánchez, X., González, A. (2015). Encuesta orientauanl. FIME UANL. Sitio web: http://bit.ly/orientaUANL
Beati, H. (2011). PHP: Creación de páginas Web dinámicas. Buenos Aires: Alfaomega Grupo Editor Argentino.
Betz, N. E., Fitzgerald, L. F., Hill, R. E. (1989). Trait-factor theories: Traditional cornerstone of career theory. In M. B. Arthur, D. T. Hall, & B. S. Lawrence (Eds.), Handbook of career theory. Cambridge: Cambridge University Press, pp. 26-40.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of test. Psychometrika, 16(3), pp. 297-334.
Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. John Wiley & Sons, Inc.
Franca, D. (2012). Decide tu carrera, orientación vocacional para jóvenes mexicanos. Relpe. Sitio web: http://www.relpe.org/decide-tu-carrera-orientacion-vocacional-para-jovenes-mexicanos/
Gati, I., Fishman-Nadav, Y., Shiloh, S. (2006). The relations between preferences for using abilities, self-estimated abilities, and measured abilities among career counseling clients. Journal of Vocational Behavior, 68, pp. 24-38.
Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities Uand work environments. Odessa, FL: Psychological Assessment Resources.
Kasabov, N. K. (1996). Foundations of neural networks, fuzzy systems, and knowledge engineering. Cambridge: MIT Press.
Katz, M. R. (1993). Computer-assisted career decision making. Hillsdale, NJ: Erlbaum.
Leavitt, N. (2006). Recommendation Technology: Will It Boost E-Commerce? IEEE Computer Society.
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, pp. 1-55.
Linden, G., Smith, B., York, J. (2003). Amazon.com Recommendations Item-to-Item Collaborative Filtering, IEEE Internet Computing.
Sobecki, J. (2014). Comparison of selected swarm intelligence algorithms in student courses recommendation application. International Journal of Software Engineering and Knowledge Engineering, 24(1), pp. 91-109.
Truemper, K. (2004). Design of logic-based intelligent systems. Wiley-Interscience.
Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. Second Edition, Morgan Kaufmann.
With the purpose of promoting the development and dissemination of research in education in Latin America, the RECI Ibero-American Journal of Computational and Informatic Sciences adhered to the Budapest Open Access Initiative, which is why it is identified as an open access publication. open. This means that any user can read the full text of the articles, print them, download them, copy them, link to them, distribute them and use the contents for other purposes. Creative Cummons licenses allow you to specify the rights of use of an open access journal available on the Internet in such a way that users know the publication rules. The authors who publish in this journal accept the following conditions: The authors retain the copyright and give the journal the right of first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this The authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided that they clearly indicate that the work was published for the first time in this journal. Authors are allowed and recommended to publish their work in I Internet (for example on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of published work