

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

Hacia un nuevo enfoque de TCP para un aumento del

throughput en redes inalámbricas

Towards a new approach of TCP for increasing throughput in wireless

networks

Rumo a uma nova abordagem TCP para maior rendimento em redes sem fio

Román Alcides Lara Cueva

Universidad de las Fuerzas Armadas, ESPE, Ecuador

ralara@espe.edu.ec

http://orcid.org/0000-0001-8848-9928

 Diego Xavier Martínez Hidalgo

Universidad de las Fuerzas Armadas, ESPE, Ecuador

dxmartinez@espe.edu.ec

https://orcid.org/0000-0001-9723-6885

Resumen

Uno de los protocolos más importantes para el correcto funcionamiento de las redes de Internet

es el protocolo TCP, el cual asegura la comunicación entre transmisor y emisor mediante un

control de la tasa de transmisión en función de la congestión. Sin embargo, con la nueva

tendencia de las comunicaciones inalámbricas, TCP enfrenta un nuevo desafío para el cual no

estaba originalmente diseñado. Siendo el PL debido al medio de transmisión motivo de la

ineficiencia de TCP en medios inalámbricos, se han desarrollado propuestas como el empleo

de notificaciones de pérdida explícita y mejores gestiones de la ventana de congestión con el

fin de adaptar TCP a tal medio de transmisión. Dichas propuestas evidencian un mejor

desempeño, aunque en su gran mayoría se limitan a evaluar su funcionamiento en programas

de simulación como Network Simulator o similares. En este contexto, el objetivo del presente

trabajo es implementar un protocolo TCP adaptado a escenarios inalámbricos en el sistema

operativo Linux, considerando un acuse de recibo negativo NACK, el cual ocupa un pequeño

segmento del protocolo TCP. TCP-NACK es capaz de diferenciar entre pérdidas por congestión

http://dx.doi.org/10.23913/reci.v7i13.81
mailto:dxmartinez@espe.edu.ec

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

y pérdidas por el medio de transmisión, y produce una mejora en throughput de 182 % bajo un

escenario emulado en comparación con TCP Reno.

Palabras clave: CWND, emulación, Linux, NACK, TCP inalámbrico.

Abstract

One of the most important protocols for the proper functionality of Internet networks is the

Transmission Control Protocol TCP, which ensures communication between transmitter and

sender by controlling the transmission data rate based on congestion. However, with the new

trend of wireless communications, TCP faces a new challenge for which it was not originally

designed. As the packet loss due to the transmission medium causes TCP inefficiency in

wireless media, several proposals have been developed such as the use of explicit loss

notifications and better management of the congestion window in order to adapt TCP to such

medium. These proposals shows a better performance, however, the vast majority are limited

to evaluating their performance in simulation programs such as Network Simulator or similar.

In this context, the objective of this paper is to deploy a TCP protocol adapted to wireless

scenarios in the Linux operating system, considering a Negative Acknowledgment NACK,

which occupies a small segment of the TCP protocol. TCP-NACK is able to differentiate

between losses due to congestion and losses by the transmission media, and produces a

Throughput improvement by 182% under an emulated scenario when compared with TCP

Reno.

Keywords: CWND, emulation, Linux, NACK, TCP wireless

Resumo

Um dos protocolos mais importantes para o bom funcionamento das redes de Internet é um

protocolo TCP, o que garante a comunicação entre o transmissor eo emissor, controlando a taxa

de transmissão dependendo do congestionamento. No entanto, com a nova tendência das

comunicações sem fio, o TCP enfrenta um novo desafio para o qual não foi originalmente

projetado. Sendo o PL devido ao meio de transmissão por causa da ineficiência do TCP nos

meios de comunicação sem fio, eles desenvolveram propostas, tais como o uso de notificações

de forma explícita e melhores esforços de janela de congestionamento, a fim de adaptar o TCP

para tal modo de perda de transmissão. Estas propostas mostram um melhor desempenho, mas

principalmente limitado para avaliar o seu desempenho em programas de simulação, tais como

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

Network Simulator ou similar. Neste contexto, o objetivo deste trabalho é a implementação de

um protocolo TCP adaptado para configurações sem fio no sistema operacional Linux,

considerando uma confirmação negativa NACK, que ocupa um pequeno segmento do protocolo

TCP. TCP-NACK é capaz de diferenciar entre as perdas e as perdas de congestionamento a

partir do meio de transmissão, e produz uma melhoria na taxa de transferência sob 182% em

relação a uma fase de TCP Reno emulado.

Palavras-chave: CWND, emulação, Linux, NACK, TCP sem fio.

Fecha Recepción: Septiembre 2017 Fecha Aceptación: Diciembre 2017

Introduction

 The Transmission Control Protocol (TCP) was designed with a focus on wired networks,

and therefore misinterprets congestion the cause of packet loss (PL) in wireless media when in

reality is caused by factors of the communication channel, such as packet collisions,

interference and noise (Xylomenos, Polyzos, Mahonen and Saaranen, 2001). To control

congestion in the network, TCP uses an acknowledgment (ACK), which is used by the receiver

to indicate that the segment was taken without errors and to specify the next expected segment.

If the transmitter does not detect any ACK for a preset time, the packets are forwarded or the

connection is canceled (Postel, 1981). TCP can use four mechanisms for the control of the

congestion window (CWND of the English Congestion Window): Slow Start, Congestion

Avoidance, Fast Retransmit or Fast Recovery. These mechanisms seek to achieve high

performance in the network and avoid a collapse due to congestion. Slow Start is used to

exponentially increase the transmission rate (BR of English Bit Rate) in the medium until a loss

of segments is detected.

From this point, the Congestion Avoidance algorithm acts, with which the transmission rate

increases linearly and decreases when detecting duplicate ACKs. Fast Retrasmit and Fast

Recovery allow you to resend segments immediately after receiving three duplicate ACKs. It

should be noted that the passage from one algorithm to another occurs when missing packets

are detected (Stevens, 1997). In networks with a low bit error rate (VER of the English Bit Error

Rate), these algorithms achieve this objective; however, in wireless networks there are

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

erroneous executions of the four algorithms and low transmission rates, as indicated in Tian,

Xu y Ansari (2005).

 The TCP protocol has different versions that seek to optimize the CWND by means of

an analysis of the ACK notification rate (Olmedo, 2008), two of the most popular versions are

TCP Reno and TCP Westwood. TCP Reno halves the CWND after receiving three duplicate

ACKs; In contrast, TCP Westwood selects a Slow Start threshold and a CWND that are

consistent with the effective connection rate at the time of congestion (Zanella, Procissi, Gerla

and Sanadidi, 2001). To reinforce the effort of CWND control in wireless networks, such as

those using Wi-Fi technology, different mechanisms have been developed, for example, by

using explicit loss notifications, adding explicit bits to the TCP segment as feedback to the

source for determine the nature of the loss, which improves up to 30% throughput values (θ ̅)

compared to TCP-NewReno, for simulated web traffic under high error probabilities

(Buchholcz, Ziegler and Do, 2005).

This proposed protocol, defined as TCP-ELN, however, has the disadvantage of not reporting

the defective packet immediately after detecting it. TCP-ELN has to wait for the successful

reception of a package to notify all previous losses as additional information inserted in the

generated ACK. Another problem in wireless networks is the retransmission time (RTO of the

English Retransmission Time Out) which is calculated based on the round trip time (RTT of

the English Round Trip Time), which is variant in wireless media and can reach to cause false

RTO (Chakraborty and Nandi, 2014).

This dependence on RTT can be seen in closed environments, where, together with hidden

terminal problems and interferences between basic service sets, des ̅ imbalances occur. As a

solution to this scenario, control of the containment windows of the MAC layer has been

proposed through the use of an analytical model of nonlinear equations. With this, a fair

distribution of θ ̅ and a confidence interval of 99.98% at a rate of two Mbps were achieved

(Hung and Bensaou, 2011). Likewise, based on the same RTT dependency problem, TCP

friendly flow control protocol (TFRC) suffers from PL and high transmission times when

applied to unstable links or long distance links.

 As a solution, an improved calculation of RTT and RTO values has been proposed, with

which the TFRC protocol is given the ability to differentiate the cause of PL. Through

simulations, the improved TFRC protocol reaches 22% greater θ ̅ compared to the standard

TFRC protocol (N. Reddy, Reddy and Padmavathamma, 2017).

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

According to the above, it can be said that there is a need to modify the TCP protocol to apply

a simple and immediate retransmission of the damaged package without reducing the CWND.

For this reason, the purpose of this paper is to design, implement and evaluate a new TCP

protocol for wireless environments. To fulfill this objective, a negative ACK confirmation

segment (NACK of the English Negative Acknowledgment) was added within the TCP

protocol header. These negative notifications will be responsible for informing the transmitter

that a packet was received with errors, instead of just discarding it. With NACK notifications,

the TCP protocol is prevented from confusing PL due to the instability of the PL channel caused

by congestion, which avoids an unnecessary reduction of the CWND.

For this, first of all, a mathematical modeling of the behavior of the proposed protocol was

started; then modifications were made to the kernel (source code) of Linux to introduce it to the

operation of the Operating System, and finally it was evaluated in an emulated scenario in order

to obtain precise values of performance under controlled conditions.

 In summary, the rest of this document is organized as follows. Section II presents the

original mathematical proposal that gave way to the implementation. Section III discusses the

modified TCP Reno protocol design within the Linux Kernel. Section IV presents the

development of the test scenario and the results obtained. Finally, section V discusses future

work.

Original mathematical analysis

 Initially, the proposed protocol was modeled in Olmedo's research (2008), where the

stages of Slow Start and Congestion Avoidance were considered from the TCP versions Reno

and Westwood. The evolution of the CWND was established as a Markow process, which

allowed obtaining an equation of θ ̅ based on the error probability of the TCP segment.

The effect of the probability of loss of segments due to the wireless medium was also added,

adapting the modeling to an increase of the CWND until the space exhaustion in the receiver

buffer, that is, establishing a retransmission of received packets with errors without the need to

reduce the CWND. The equation corresponding to the modeling of the proposed protocol is as

follows:

𝜗̅ = ∑ (𝜋(𝑊𝑜=𝑖) ∑
(𝑛 − 1)(1 − 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃)

∆𝑡(𝑊𝑜 = 𝑖, 𝑛)
𝑃𝑟{𝑛|𝑊𝑜 = 𝑖}𝑁𝑇𝐶𝑃

𝑛𝑜𝑓(𝑊𝑜=𝑖)

𝑛=2

)

𝐶

𝑖=2

, [𝑏𝑖𝑡𝑠/𝑠] (1)

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

 Where C corresponds to the burst number in which the maximum window size is

reached without considering the receiver buffer, 𝑊𝑜 is the initial CWND, 𝑛𝑜𝑓 is the index of

the lost packet when the receiver buffer is saturated, 𝑁𝑇𝐶𝑃 is the number of bits per TCP

segment, ∆𝑡(𝑊𝑜, 𝑛) is the time of arrival of the umpteenth ACK, 𝜋𝑊𝑜
 are the values of the

stability vector of the Markov process, 𝑃𝑟{𝑛|𝑊𝑜} is the probability that a segment has been lost

due to having an initial window of congestion, y 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃 corresponds to the probability of loss

of a TCP segment due exclusively to the problems of the wireless medium.

Also, from equation 1 a graphical comparison between the 𝜃̅ normalized (𝜂𝜃̅) of the TCP-Reno

protocol, TCP-Westwoody its modified versions (TCP-Reno-NACK and TCP-Westwood-

NACK) depending on 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃. Figure 1 shows the generated curves for each protocol.

Figura 1. 𝜂𝜃̅ teórico en función de 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃

Fuente: Elaboración propia

 Both improved versions of the TCP protocol have similar behavior and better

performance compared to their generic versions. Specifically, TCP-Reno-NACK (hereinafter

TCP-NACK) has a gain of (0.96-0.22) ∙ 100 / 0.22 = 336% (3.36 times greater) compared to

TCP-Reno in 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃 = 10−2 (hereinafter generic TCP).

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

Implementation in Linux

 To implement the TCP-NACK protocol, the Linux kernel was modified in version

2.6.32 obtained from the Ubuntu distribution repositories, as it is an open access and open

source system (Herbert, 2004). Specifically, the include and net directories were modified,

which are distributed within the Kernel, as shown in Figure 2.

Figura 2. Estructura del Kernel de Linux 2.6.32, directorios include y net

Fuente: Elaboración propia

A. Sockets TCP

 In Linux, the different communication protocols are implemented through sockets,

which work as a common interface between the user and the different file systems and devices.

There are three data structures for the management of sockets. The first is called socket buffer,

which stores the general information of the package. The second one is called socket, and it

records the open connections. The last one is called sock, and it keeps the state of open

connections (Herbert, 2004).

B. Sending data through TCP

 TCP is a protocol that ensures reliable transmission by controlling the flow of data.

Within the Linux Kernel there are three main functions involved in the process of data

transmission and flow control through TCP:

1) tcp_sendmsg: Copy the data in the user's space to the Linux kernel space, where they are

assigned to the socket buffers and divided into smaller segments.

2) tcp_send_skb: It organizes the data in the socket buffers to the transmission queue and

decides if the transmission can be carried out or not.

3) tcp_transmit_skb: Build the TCP header and send the segments to the network layer.

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

C. Data reception by TCP

 The received packets must be transferred from the network layer to the transport layer

through the following functions for processing the TCP header and the data contained in the

segment:

1) tcp_v4_rcv: Verify the integrity of the package, check that it is destined to that computer,

process the checksum of the transport layer and remove the IP header.

2) tcp_v4_do_rcv: Verify that the received segment contains a complete header and check the

current status of the TCP connection.

3) tcp_rcv_established: If the current state of the TCP connection is defined as established, it

processes the received segments and copies the data to the user's space. If the segments do

not show errors, a fast process called Fast Path is executed; Otherwise, Slow Path is

executed.

D. Modification of the TCP header

 To create the flag corresponding to the NACK notification, a bit of the reserved field

was taken from the TCP segment header, as shown in figure 3. With this modification, if the

transmitter receives an acknowledgment packet with the NACK bit equal to 1, means that the

receiver received a defective packet and requests its retransmission without a reduction of the

CWND. On the other hand, if the NACK bit is equal to 0 in the acknowledgment, it corresponds

to a normal ACK notification, which causes the transmitter to send packets in the standard

manner.

Figura 3. Estructura de la cabecera TCP-NACK

Fuente: Elaboración propia

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

 The code that defines the TCP header is located in the /include/Linux/tcp.h file. To make

the NACK flag, a new attribute called nack has been created inside that file, which reduces the

res1 attribute to three bits, which corresponds to the reserved TCP field.

To define the position of the flags within the TCP header, the structure tcp_flag_world should

be modified with the format TCP_FLAG_FLAGNAME = __cpu_to_be32 (0xXXXXXXXX),

where each X corresponds to a possible position of the flag. Therefore, to assign the position of

the NACK flag, the code line TCP_FLAG_NACK = __cpu_to_be32 (0x01000000) was added

within that structure.

Finally, it is necessary to define within the structure tcp_skb_cb the value that the NACK flag

will take when it is assigned to a segment. For this reason, the line of code #define

TCPCB_FLAG_NACK 0x100 was created within that structure. It is also necessary to extend

the type of the flags attribute from u8 (8 bits) to u16 (16 bits).

E. Sending NACK notifications

 Due to the similarity between the NACK and ACK notifications, the implementation of

the function for sending NACK was based on the function tcp_send_ack, which is located in

the file /net/ipv4/tcp_output.c.

E.1 tcp_send_nack function

This function, which is declared inside the /include/net/tcp.h file, sends NACK notifications in

four steps. First, the status of the TCP connection is checked: if it is verified that the connection

was rebooted, the NACK notification is not sent and the function ends. Otherwise, the

skb_reserve function is invoked, which creates a buffer socket with a memory space

corresponding to the maximum size of the TCP header. Subsequently, by means of the function

tcp_init_nondata_skb, the positive state for the NACK flag and the sequence number to be

retransmitted are sent to the control buffer. Finally, with the function tcp_transmit_skb, the

segment is transmitted to the network layer.

Modification in tcp_transmit_skb

If the segment to be transmitted has the new flag TCP_FLAG_NACK raised, then the field

"negative acknowledgment number" must contain the value of the sequence number of the

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

detected TCP segment with errors. Finally, the function tcp_send_nack is invoked inside the

function tcp_rcv_established just after detecting an error.

E.2 Receiving NACK error notifications

Within the treatment of the received segments there are two possible paths: Fast Path and Slow

Path. All the segments with a raised NACK flag use Slow Path, where first the integrity of the

TCP segment is verified by means of a checksum or checksum to consequently verify the state

of the NACK flag. If positive, the function tcp_retransmit_skb is invoked for an immediate

retransmission of the requested segment, which is determined by the function

tcp_write_queue_head.

Experimentation and results

The test scenario consists of two computers loaded with the modified Linux Kernel, connected

by a wireless link emulated by the Netem software, which is installed on a third intermediate

computer with two network interfaces configured in bridge mode, as described indicated in

Figure 4. The emulation of the channel is due to the need to maintain a fixed value of error rate

for multiple injections of traffic.

Figura 4. Topología de la prueba de emulación

Fuente: Elaboración propia

 Netem is a utility available in the Linux Kernel that allows to emulate a link by

specifying parameters of bandwidth, delay, losses and traffic control, using statistical

probability (Hemminger, 2005). The emulated wireless link contains the parameters described

in table 1.

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

Tabla 1. Parámetros para la emulación del enlace inalámbrico

Parámetro Valor

BR 5 Mbits/s

delay 70 ms

Probabilidad de error 0.5 %, 1 % y 3 %
Fuente: Elaboración propia

 Additionally, the Iperf and Tcpprobe tools, available in the Linux repositories, were

used in each terminal equipment. These tools allow you to obtain CWND values and 𝜃̅.

A. Iperf configuration

 Iperf allows a client-server TCP connection and measures its data transfer rate. Table 2

details the commands necessary for its configuration by the terminal, both for the transmitting

equipment and for the receiver.

Tabla 2. Comandos de configuración para iperf

Terminal TCP Línea de comando

Transmisor iperf –c IPdirection –t time

Receptor iperf–s
Fuente: Elaboración propia

B. Tcpprobe configuration

 Tcpprobe is a Linux module that allows you to extract parameters such as the CWND

and the thresholds of Slow Start and Congestion Avoidance. It is usually executed in the issuing

terminal together with the Iperf tool and then stores the results in the data.out file. Code 1 shows

its use as a whole.

Código 1. Líneas de código Tcpprobe e Iperf para obtener la CWND

#! /bin/bash
modprobetcp_probe port=5001
cat /proc/net/tcpprobe>/tmp/data.out&
pid=$!
iperf -c 192.168.1.2
kill $pid

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

 With all these tools a comparison was obtained between the ηθ ̅ of the generic TCP and

TCP-NACK depending on 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃. Figure 5 shows the resulting curves for each emulated

protocol.

Figura 5. 𝜂𝜃̅ emulado en función de 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃

Fuente: Elaboración propia

 Although the emulation did not show an increase as high as the theoretical results

suggest (figure 1), it was possible to reach an improvement of (0.775 − 0.275) ∙ 100/0.275 =

182 % (1.82 veces mayor) to 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃 = 10−2.

 The size of the CWND was also obtained according to the BER value over time, with

which the 𝜃̅ obtained as the area under the curve generated by the CWND. Considering a BR

of 5 Mbps, under BER values of 0.5%, 1% and 5%, the results shown in Table 3 were achieved.

Tabla 3. Resultados del enlace emulado

BER (%)

TCP genérico TCP-NACK

𝜽̅ (Mbits/s) 𝜽̅ (Mbits/s)
Porcentaje de mejora (%)
(𝜃̅𝑁𝐴𝐶𝐾 − 𝜃̅𝐺𝑒𝑛) ∙ 100/𝜃̅𝐺𝑒𝑛

0.5 1.53 1.79 17

1 1.27 1.46 15

5 0.52 0.74 42
Fuente: Elaboración propia

 For each BER value, an improvement in the transmission speed of TCP-NACK can be

observed in comparison with the results of generic TCP, the largest being at a BER value of

5%. The TCP-NACK enhancement increases linearly with the BER value due to the number of

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

packets that can be notified with NACK and, therefore, retransmitted without the reduction of

the CWND.

Conclusions and future work

 Because the TCP protocol was developed to work in wired networks, its operation is not

suitable for wireless media, where damaged packages - whether due to interference, obstacles

or fading - are discarded and mistakenly considered as a consequence of congestion. . This

assumption leads to the unnecessary reduction of the CWND, which consequently decreases

the performance of the network.

The proposed TCP-NACK protocol - which was modeled, implemented and emulated - solves

this problem by incorporating a NACK error notification into the operation of the generic TCP

protocol. This notification will indicate to the transmitter the arrival of a defective package and

will proceed with an immediate retransmission of said package without the reduction of the

CWND.

The results obtained show a better performance of the TCP-NACK protocol compared to its

generic counterpart, under the different error probabilities and injection rates used. Although

the experimental results are lower than the theoretical results (expected increase of 336%), an

increase of θ ̅ of 182% was achieved in comparison with the generic TCP protocol at P_ (sec,

TCP) = 〖10 〗 ^ (- 2). Additionally, with the different BER values, an improvement of 25%

was reached, on average, which demonstrates the best performance of TCP-NACK under said

emulated parameters.

 In comparison with the TCP-ELN protocol, which is the most similar to the proposed

TCP-NACK protocol, to a 𝑃𝑠𝑒𝑔,𝑇𝐶𝑃 = 10−2, TCP-ELN exceeds the generic TCP-Reno protocol

by 119%, as indicated in Buchholcz, Ziegler and Do (2005); however, TCP-NACK exceeds the

same protocol, under the same condition of loss of segments, by 182%, as shown in figure 5.

This difference can be caused by the immediate retransmission of TCP-NACK and by the use

of a single bit for the notification instead of the various bits that TCP-ELN needs from the

optional field within the TCP header.

As future work, we are interested not only in expanding the evaluation of the performance of

TCP-NACK considering a greater number of BER values, but also analyzing its performance

with other quality of service metrics, such as delay, jitter and lost packets. Likewise, we are

interested in presenting an improved version of TCP-NACK, where for each received NACK

notification the CWND is increased and the retransmission of all the packets from the notified

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

in error is performed. Our hypothesis is that with this adaptation the TCP-NACK protocol

would have the ability to anticipate defective packets not yet notified by NACK or duplicate

ACK, which would increase the 𝜃̅ resulting.

Finally, due to the frequent releases of new versions of the Linux Kernel, we are very interested

in developing an executable that allows us to apply the TCP-NACK operation in the source

code of the system. With this we would avoid the process of modifying line by line the Linux

Kernel and we would adapt the protocol for any available version.

Acknowledgment

The authors wish to express their gratitude to the University of the Armed Forces, ESPE, for

the financial support in the development of this work through the project 2010-PIT-008.

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

References

Buchholcz, G., Ziegler, T. and Do, T. (2005). TCP-ELN: on the protocol aspects and

performance of explicit loss notification for TCP over wireless networks. First

International Conference on Wireless Internet, 172–179. doi:10.1109/WICON.2005.31.

Chakraborty, S. and Nandi, S. (2014). Evaluating transport protocol performance over a

wireless mesh backbone. Performance Evaluation, 79, 198–215.

doi:10.1016/j.peva.2014.07.013.

Hemminger, S. (2005). Network Emulation with NetEm. Proceedings of the 6th Australian

National Linux Conference (LCA 2005), 18–23. Retrieved from https://goo.gl/3qchck.

Herbert, T. F. (2004). The Linux TCP/IP Stack: Networking for Embedded Systems (Networking

Series). Rockland, MA, USA: Charles River Media, Inc.

Hung, K. L. and Bensaou, B. (2011). TCP performance optimization in multi-cell WLANs.

Performance Evaluation, 68(9), 806–824. doi:10.1016/j.peva.2011.04.002.

Olmedo, G. (2008). Controle de congestionamento do protocolo TCP em sistemas de

comunicação sem fio CDMA usando estrategia de detecção multiusuario, arranjo de

antenas e correção de erro FEC (tesis de doctorado). Universidade Estadual de Campinas.

Facultade de Engenharia Elétrica e de Computação, Brasil. Recuperado de

https://goo.gl/ef2DJD.

Postel, J. (1981). Transmission Control Protocol. Rfc 793. doi:10.17487/rfc0793.

Reddy, N., Reddy, P., y Padmavathamma, M. (2017). Efficient Traffic Engineering Strategies

for Improving the Performance of TCP Friendly Rate Control Protocol. Future Internet,

9(74). doi:10.3390/fi9040074.

Stevens, W. R. (1997). TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms. doi:10.17487/RFC2001.

Tian, Y., Xu, K. and Ansari, N. (2005). TCP in wireless environments: Problems and solutions.

IEEE Communications Magazine, 43(3), S27-S32. doi:10.1109/MCOM.2005.1404595.

Xylomenos, G., Polyzos, G. C., Mahonen, P. and Saaranen, M. (2001). TCP performance issues

over wireless links. IEEE Communications Magazine, 39(4), 1-12.

doi:10.1109/35.917504.

Zanella, A., Procissi, G., Gerla, M., and Sanadidi, M. Y. (2001). TCP Westwood: analytic

model and performance evaluation. Global Telecommunications Conference, 2001.

GLOBECOM ’01. IEEE, 3, 1703–1707. doi:10.1109/GLOCOM.2001.965870.

http://dx.doi.org/10.23913/reci.v7i13.81
https://goo.gl/ef2DJD

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

Rol de Contribución Autor(es)

Conceptualización DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Metodología DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Software DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Validación DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Análisis Formal DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Investigación DIEGO XAVIER MARTÍNEZ HIDALGO

Recursos DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO
UNIVERSIDAD DE LAS FUERZAS ARMADAS – ESPE APOYO

Curación de datos DIEGO XAVIER MARTÍNEZ HIDALGO

Escritura - Preparación del borrador
original

DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Escritura - Revisión y edición DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Visualización DIEGO XAVIER MARTÍNEZ HIDALGO

Supervisión DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Administración de Proyectos DIEGO XAVIER MARTÍNEZ HIDALGO PRINCIPAL
ROMÁN ALCIVES LARA CUEVA APOYO APOYO

Adquisición de fondos DIEGO XAVIER MARTÍNEZ HIDALGO

http://dx.doi.org/10.23913/reci.v7i13.81

Vol. 7, Núm. 13 Enero – Junio 2018 DOI: 10.23913/reci.v7i13.81

Síntesis curricular de los autores

Román Lara Cueva

Ingeniero en Electrónica y Telecomunicaciones por la Escuela

Politécnica Nacional (Ecuador, 2001), magíster en Sistemas

Inalámbricos y Tecnologías Relacionadas del Politécnico di Torino (Italia, 2005).

Maestría y doctorado en Redes de Telecomunicación para Países en Desarrollo por

la Universidad Rey Juan Carlos (España, 2010 y 2015, respectivamente). Se unió al

Departamento de Ingeniería Eléctrica de la Universidad de las Fuerzas Armadas,

ESPE, en 2002 y ha sido profesor titular principal de dicha casa de estudios desde

2005. Ha participado en más de diez proyectos de investigación con fondos públicos,

y ha dirigido cinco de ellos. Sus principales intereses de investigación incluyen el

procesamiento digital de señales, ciudades inteligentes, sistemas inalámbricos y la

teoría de aprendizaje automático.

Diego Martínez Hidalgo

Bachiller en Eléctrica y Electrónica por el Colegio Técnico Experimental

Salesiano Don Bosco (Ecuador, 2009). Ingeniero en Electrónica y

Telecomunicaciones por la Universidad de las Fuerzas Armadas, ESPE (Ecuador,

2017). En el 2018 culminó el segundo nivel para la certificación en redes de

computadoras y telecomunicaciones Cisco CCNA2. Sus intereses de investigación

incluyen los sistemas de comunicaciones inalámbricas, las redes Ethernet y el diseño

de soluciones electrónicas.

http://dx.doi.org/10.23913/reci.v7i13.81

